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The temperature dependence of the reaction rate constant for tunneling transfer of an
atomic particle in solid near absolute zero was studied. Different mechanisms describing the
temperature dependence were considered: reorganization of the medium. modulation of
parameters of the potential barrier, and under-barrier friction. [t was established that for the
rate constant {K) at low temperatures the equation InK = InXy + C,74 + G573 + C,T® + C, T8
is valid. Experimental data were compared with the theory. A good agreement is achieved
when the quantum nature of the hydrogen crystal is applied under the assumption of a
predominant role of reorganization of the medium.
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Many chemical reactions occurring at helium tem-
peratures have been a subject of study in recent years.
Prominent among these are reactions involving transfer
of the H atom, which usually proceed viag the tunneling
mechanism. This is indicated by an anomalously high
isotope effect and the finite low-temperature limit of
chemical reactions. The detailed review and analysis of
experimental and theoretical results have previously been
reported.1-2

Analyzing the temperature dependence of the rate
constants of solid state reactions, three main tempera-
ture intervals can be distinguished.!—* In the low-tem-
perature interval. both the particle transfer and the
motion of the molecular environment are quantized. In
this interval, the temperature dependence of the rate
constant is determined by the type of intermolecular
vibrations of reagents. In the case of the local mode, the
dependence has the form of a low-temperature plateau,
and when the phonon continuous spectrum prevails, the
logarithm of the rate constant is proportional to the
temperature in a sufficiently high power (from tlic fourth
to cighth power, sce, e.g.. Ref. 3). The next region
corresponds to classical intermolecular motions and quan-
tized particle transfer. In this interval, the logarithm of
the rate constant is proportional to the temperature.
Finally, in the region of sufficiently high temperatures,
both intermolecular vibrations and particle transfer show
classical behavior. In this region, the temperature de-
pendence of the rate constant is determined by the
Arrhenius equation.

Two main approaches to the description of solid
state tunneling reactions can be distinguished: (a) ana-
lytical method based on the modified theory of
nonradiative transitions4—? and (b) numerical method
of computer simulation of the dynamics of tunneling
transition based on the calculation of energy for the
system moving along imaginary trajectories (see, e.g.,
Ref. 10 and literature cited in monographs219). As a
rule, exact data on the reaction system (the multidimen-
sional potential energy surface, quantum numbers of the
final state) are unavailable; therefore, analytical ap-
proaches that allow one to present experimental resulis
qualitatively are used for the description of the regulari-
ties of chemical reactions. In some cases, the theory can
be compared with experimental data.1-3:3

fn the low-temperature tunneling pathways, reaction
routes deviate from the classical passways. A particle
"cuts an angle” and tunnels through a higher, but nar-
rower potential barrier rather than surmount the bar-
rier.!! Using this mechanism, one can describe!—3:3
experimental data on the temperature dependence of the
rate constants of reactions with H atom transfer between
heavy reagents.12—-16

The pattern of the temperature dependence of the
rate constant depends on the specific features of reorga-
nization of the medium, under-barrier friction, and
nonadiabatic effects, which are also manifested at tem-
peratures close to absolute zero. These temperature de-
pendences have recently been observed in several ex-
perimental works (see Ref. 17 and literature cited herein)
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in which solid state reactions of H atoms (deuterium) in
molecular hydrogen (deuterium) were studied. The for-
mation of atoms occurred during y-irradiation of Hj,
HD. and D, crystals. In particular, the temperature
dependence of the rate constant of the reaction

HD+D — H + Dy th

was studied in the 2.6—6.5 K interval.!”

This work applies the methods of the theory of
nonradiative transitions3—7 to the detailed analysis of
the role of long-wave phonons in tunneling transfer
reactions at helium temperatures. We attempted to de-
termine the characteristic temperature dependences of
the rate constants of solid state reactions (K) in this
region. Although investigation of the kinetics of chemi-
cal reactions with hydrogen transfer near absolute zero
was a subject of many studies,1318—22 the temperature
dependence of the rate constant has been obtained only
in one work!7 and, hence. it is of interest to compare
our calculated data with the results of that work.

Method of calculation of the transition amplitude

Effects of various factors on the K value can be
taken into account on the basis of the general theory of
tunneling transitions in the muiti-particle system. The
method of determination of the amplitude of tunneling
transition of one of the particles in the multi-particle
system based on using the Lippmann—Schwinger equa-
tion has previously been developed.8-7.23

Considering tunneling of heavy particles, one can
use the adiabatic approximation that is fulfilled under
the conditions that all transitions of heavy particles
occur in the same electron state. The following inequal-
ity is the necessary condition of validity of the adiabatic
approximation:

Ap/a < 1, (H

where Ay is the amplitude of multi-particle tunneling
transition from state i to state f, and A is the lowest
difference between two adiabatic terms of the system.
Since Ay contains an exponentially low factor related to
tunneling of one of the atoms, condition (}) is almost
always fulfilled. The Hamiltonian of the system is writ-
ten as follows:

1
M

A, % LU 2

n

H=-23
"

N |~

The atomic system of units is used hereinafier; summa-
tion is performed over all particles involved in the
transition, M, is the mass of the nth particle, A, is the
Laplacian over coordinates of the nth particle, and
U({#) is the multidimensional adiabatic potential en-
ergy, where {r} means the set of all coordinates of the
system. The initial (i) and final (f) states are determined
by two focal minima on the multidimensional surface of
the potential energy. The initial y; and final y; wave

functions can be considered with a high accuracy to be
functions of the harmonic oscillator corresponding to
normal coordinates ¢;, g through which deviations
{r—r} and {r—r;} of natural coordinates from the equilib-
rium positions r; and rp, respectively, are expressed. The
energy £ > e. where ¢ is the energy of the full system,
which is retained in the transition, can be defined in
such a fashion so that in the region of coordinates {r},
determined by the inequality U({r}) < E, the known
oscillator functions of normal coordinates sufficiently
exactly approximate the initial and final wave functions.
Let us name these regions Li(E) and Ly E).

The equation for the amplitude of transition A has
the following form® 723

Ag = Jdir} (A - twdlr el gAY — B x
LE)  LitE)

x Gylirt{rhe) - [UUR) — Elwirhio). 3)

Here Gy is the muitidimensional Green function at the e
energy for the 4, Hamiltonian

1

Hy = ‘%% a2 M, )
where

o [UAR) R E LE), L(E) )

Wi = 1 ¢ irfe L(EY L(EY &

Some "randomness” in choosing £ does not result in
an ambiguous determination of Ag. This follows from
the fact that a change in the £ value also implies the
redetermination of the V potential and thus, the divi-
sion of the full Hamiltonian into the "zero" part H, and
the “interaction™ (L({f}) — £) changes. However,
the Lippmann—Schwinger equation, on the basis of
which Eq. (3) was obtained, is invariant relative to this
division.

Thus, the calculation of the amplitude of transition
is entirely reduced to the determination of the Green
function G{{n.{r'}:e) and further quadratures. Note
that according to the definition of K{{r}) in Eq. (3) and
the fact that € < F, the Green function "lies” entirely in
the under-barrier region. As has been shown,?4 if the
classical trajectory connecting points {r} and {r’} lies
completely in the above- or under-barrier region, there
is a sufficiently simple calculation algorithm for the
determination of the quasi-classic Green function, which
was used in the calculation program described earlier.?3
The inequality

2mV —cy <1 > |, (6)

which determines the applicability of the quasi-classical
approximation (here /, is the characteristic length of the
trajectory along the tunneling coordinate; m is the mass
of the tunneling particle), is valid for pronounced tun-
neling transitions. Therefore, the Green function in the
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amplitude of Eq. (3) can be calculated, and the determi-
nation of the amplitude is reduced to quadratures.

Equation (3) together with definitions (4) and (5)
has a clear physical meaning. The amplitude of the
tunneling transition Ag from the known in the L; region
initial state y; to the fixed in the Ly region final state wy
is reduced to the standard form:

A = {wd Uy, (7

where the effective interaction: U is determined by the
equality:

U =[0G — 8- Glinhiryeltdry — . (8)

The Green function Gy is determined by the value of
the ¥ potential in the "tumneling” region. Thus, the
interaction resulting in the transition according to for-
mulas (7) and (8) was not chosen arbitrarily. The U
operator is similar to the known Bardin operator in the
model of one-particle tunneling.

The method proposed imposes no limitations on the
shape of the barrier U({r}), the dimensionality of the
system in which the tunneling transition occurs, and the
energies of the initial and final states. The latter can be
any initial and final states of the system of oscillators,
i.e., the method can be used for calculations of "state to
state” transitions. Note that the widely used "instanton”
method of determination of the probability of a transi-
tion!? deals only with the ground states of oscillators
and a sufficiently restricted class of analytical equations
for the shape of the potential barrier.

The multi-particle tunneling transition is reduced, in
the majority of cases, to the wnneling transition of only
one particle (H or D atom), which is not necessarily
one-dimensional over the tunneling coordinate r,. Over
coordinates of other particles {r,}, the characteristc
regions in the initial (L;) and final (Lp states overlap.
The characteristic height of the tunneling barrier U is
much higher, as a rule, than the energy AE transmitted
into "non-tunneling” degrees of freedom. When the
following inequality is fulfilled:

V2mU -1, « U /AE 9

(where [, is the tunneling distance), adiabatic uncou-
pling of tunneling and non-tunneling coordinates is
possible. and the equation for the Green function can be
written in the form

GUirtirbie) = 3ryt — (ruh) - Glrar Jrghied. (10)

irgt ~ (r'mh) = I18 0y — ).

where index m passes through all non-tunneling (nt)
coordinates.

The Green function G(r.r {ryt.€) over tunneling
variables depends on the ensemble of non-tunneling
variables {r,} and energy g, as on the parameters; g is

the effective energy of a non-tunneling particle that
depends on the energy exchange in centers | and 2.9
However, in many calculations, it is accepted to be g, =
1/2(E| + E5) (£, and £; are the bonding energies of the
wunneling particle in centers 1 and 2, respectively) and
independent of the temperature and parameters of the
medium. The effects related to the temperature depen-
dence of g are outside the framework of the adiabatic
approximation and will not be considered in this work.
Inequality (9) is a condition of the so-called double
adiabatic approximation,! according to which non-tun-
neling atoms move much more slowly than the tunnel-
ing atom, i.e., the tunneling transition occurs at station-
ary nuclei (see formula (10)). Then the integration is
performed over the coordinates of non-tunneling atoms
{a slow subsystem):

Ag = Id{rm} 'Hd"tdrx"Vf(.(’m}v"()Uf{'{"m:’s"t) x
X G mdie) - Ullrgdhn Dwil{ngdn ). (1D

{t is often the case when the tunneling {r;} and non-
tunneling {r,} degrees of freedom are divided in the
initial and final states that

vi /D) = wy l{r ) - wi fdnh. (2

Then Eq. (11) for the amplitude Ay can be written in a
more compact form:

A = wldrahAgalraDiwiltrad . (13

where Azq({r,}) is the amplitude of the adiabatic tunnei-
ing transition at a fixed position of the coordinates of
the "heavy” (non-tunneling) subsystem {r,}, which can
be presented in the following form:

Agglira) = Hd’(dr('<‘+'({"(}f)Uf({rm),’i) X
X GUrr drabie) - Uldrador Ywin ). (i4)

Due to a low value of the tunnpeling amplitude Ap
and the quasi-continuous spectrum of the system be-
cause of the participation of many non-tunneling vari-
ables, the K rate constant of the tunneling transition is
determined by the Fermi "gold rule™

K = 2nAv; Y |Agl¥8(g; — ). (15)

Equations (3), (14). and (I5) are the basis -for the
determination of the temperature dependence of the
rate constant of tunneling transitions in the condensed
matter. At low temperatures, the transition occurs mainly
from the ground state ¢; of the quantum tunneling
system. According to Egs. (13) and (15), the tempera-
ture dependence in the low-temperature limit is com-
pletely determined by the low-energy states of the heavy
subsystem (medium) on which the ampiitude of transi-
tion Ag depends. For averaging the equilibrium initial
states of the heavy subsystem are used.
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Mechanisms of the temperature dependence

The tunneling transition is accompanied, as a rule,
by the rearrangement of the slow nuclear subsystem,
which is manifested in the difference of wave functions
y; and y; in Eq. (13). This rearrangement and related
energy of reorganization of the medium result in a
strong temperature dependence of the transition rate
constant.

In addition, the probability of the tunneling transi-
tion strongly depends on the barrier parameters, which
can vary substantially during intermolecular vibrations,
resulting in a change in the distance between the re-
agents. The tunneling transition occurs most probably
when two reagents approach within the shortest dis-
tance. This specific feature of the dynamics of the
tunneling transition has previously been considered.5 It
has been shown that intermolecular motions give an
anomalously strong temperature dependence of the rate
constant, and this provides a good agreement between
the theory and experiment of the tunneling H atom
transfer between two heavy particles.

The next specific feature of the process is that a
particle moving in the under-barrier region experiences
the effect of surrounding atoms (under-barrier friction).
The number of atoms active in this respect is usually
low. The continual models that describe under-barrier
friction are summarized in the review.?8 To find a
temperature dependence of the tunneling transition near
absolute zero and related to the under-barrier friction,
one should know how the interaction of phonons with a
particle resulting in a change in the energy of this
tunneling particle depends on the frequency of 2 phonon.
For this purpose, it is necessary to consider the true
Hamiltonian rather than the model for the system in
which the length of the tunneling path / is comparable
with the lattice constant 4. Such a consideration will be
made below.

The study performed is based on the successive
analysis of three (distinguished above) mechanisms of
the process.

I. Rearrangement of the slow vibrational subsystem
during the transition of a tunneling particle from center
I to the under-barrier region and from the under-barrier
region to center 2.

2. Interaction of a tunneling particle with vibrations
in centers | and 2. which changes the shape of the
potential barrier.and the. tunneling transfer length

3. Energy exchange of a tunneling paricle with
phonons in the under-barrier region (under-barrier fric-
tion).

In the general case, all these mechanisms are mani-
fested simultaneously. However, as a rule, one of them
is predominant. Then the correiation of different mecha-
nisms can be ignored with good accuracy. Therefore,
they can be considered individually, and in the analysis
of mechanisms | and 2, the results of the previous
studies can be used.37

A portion of energy evolved in reaction (1) can be
transmitted to rotational degrees of freedom of mol-
ecules localized in centers 1 and 2, because hvdrogen
molecules rotate freely in sites of the lattice of the
crystalline matrix.2? Since the temperature dependence
is also determined by the initial distribution over rota-
tional levels, and the value of a rotational quantum
(~60 K) exceeds by an order of magnitude the tempera-
ture range under consideration, the rotational system
does not contribute to the character of the temperature
dependence of the rate constant of solid state reactions.
Its influence lies only in the redistribution of the energy
transmitted to the rotational and vibrational degrees of
freedom of the crystal. The slow vibrational (phonon)
subsystem, which will be considered hereinafter. exerts
the main effect on the character of the low-temperature
dependence of K.

First mechanism takes into account the distortion of
the phonon subsystem during transfer of a particle. A
light particle, removed from one localized state to an-
other, results in the rearrangement of the slow nuclear
subsystem, which is expressed as a change in the posi-
tions of the centers of vibrations of the nuclei and (in
the general case) their frequencies.

Neglecting the dependence of A,4({ry,}) in Eq. (13)
on coordinates {r,}, we can reduce the analysis of the
role of this mechanism to the calculation of the Franck—
Condon factors28:2% that are determined by overlapping
integrals of wave functions in the initial and final states
of the system:

@' = WG G — ). (16)

Here &, are the changes in the position of the center of
vibration at the 1 -» f transition (the changes in the
frequencies are neglected, as usual), and va‘i are the
final and initial vibrational wave functions.

For a large energy release, this transition can be
characterized by the p%/2M magnitude (M is the effec-
tive mass), which coincides, in the unimodal case, with
the energy of the vertical transition in the corresponding
parabolic potentials (here p is the effective transmitted
momentum).

The strongest dependence of the rate constants of
the reactions under consideration on the temperature T
originates under the conditions of a strong interaction of
a tunneling particle with a heavy subsystem. In this case,
the temperature dependence of K is determined by the
probability of transter of the ¢, energy to phonons of
the lattice:

K = expl—(g,, ~ PY/BL (17

Equation (17) is the generalization of the known
Marcus formula3® to the region of thermal energies,
comparable with energies of phonons in the crystal.
Note that the Gaussian approximation of type (17) in
the theory of radiative and nonradiative transitions with
a large energy release was developed by independent
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methods in various areas of physics.30—32 Here the P
value (energy of reorganization of the medium) is tem-
perature-independent, and the f§ function tends to a
constant value at 7 — 0 and is proportional to the
temperature (B ~ T) at k7 > wp (wp is the Debye
frequency).

The temperature dependence of the rate constant of
the process is mainly determined by the § function in
Eqg. (17), which has the following form for the consid-
ered mechanism of the medium effect:

B=] %m-’ﬂm)eolh% do. (18)

Here flw) is the spectrum of vibrations (in the case of
the Debye spectrum Alw) = 3w?/wp’). The energy of
reorganization of the medium in Eq. (17) is determined
as follows:

P= I%Qlﬂw)dm. (19)

Let us divide the region of integration over o in Eq.
(18) into two intervals, 0—27 and 27—wp, accepting
coth{ew/27) = 2T/w in the Ist interval and coth{w/27T) =
1 in the 2nd interval. This procedure is approximate, but
at this stage of study it is satisfactory, because the exact
calculation can result only in some refinement of the co-
efficients in the expansion of B with respect to powers T.

The p(w) values in Egs. (18) and (19), characterizing
the efficiency of vibrational transition in the v mode
with the ® frequency, can be determined from the
correlation

[Meo?s,Hw)l/2 = p(e)/2M, (20)
which gives
pl@) = Med (). (€39)]

The form of the 8,(w) function, which determines
the displacement of vibrational centers in the initial and
final states, is unknown. [t can be obtained only after
detailed calculation of the multi-dimensional surface of
the potential energy U({r}).

Therefore, we consider three particular cases:

1) 8,(w) = 3y = const, i.e., displacements are the
same for all modes, then p ~ Mw and

Bi D = B IO + (64/5)(T/p)®]. an

where B!} = (1/2)Mwp38y2, and the energy of reorga-
nization of the medium

PY = (3/5) Mop 5,2

where the lower index at B and P designates the mecha-
nism, and the upper index designates different particular
cases of the dependence of §, on w;

2) d(w)VMw = x = const, ie., the displacements
in units of zero vibrations for each. mode are the same;
here p ~ Jo and

By = B ION1 + 8(T/wp)?), (23)

where B,(2(0) = (3/3)c*wp?, and P,'? = (3/8)c’wp;

3) §,(w) = 1w, where T = const.

This version is the most probable at very low fre-
quencies, because the centers localized at points Ry, R;
participate in long-wave vibrations of the crystal, and
the distinction of their action on the surrounding centers

is expressed by the factor
o(g) = (1/4m)jeiaR: — elaRi)dg 24)

(q is the wave vector of a phonon). which can be
included in integrands (18) and (19) for § and P. Then

B3 = B0 + (256/7){ T/ap)?],

where B,((0) = (3/8)Mtlwp’. In this case, P/ =
(3/14) Mrlap?.

For the cases considered above, the temperature
dependence of K is the following:

KD~ exp[= 041D + (64/5)Q,{N(T/wp)S).

K\~ exp{=0? + 80, (T/wp)),

K - exp[=0; + (236/7)0) D (T/0p)?). (25)
where the Q,(S) values are determined by the equation

0\ = (g, — P5)Y/8,%(0).

Second mechanism reflects the influence of modula-
tions of the potential barrier due to vibrations of the
reagents.5 in this case, the temperature dependence of
the rate constant is related to the temperature effect on
the amplitude of intermolecular vibrations and energy
transfer e, (g5 > ) to the phonon subsystem. The
dependence can be described by the equation

Ky ~ e Dexpl—~(ey, —~ P)?/Bx( D1, (26)

which differs from Eq. (17) by the appearance of the
additional factor PP in Eq. (26) that depends expo-
nentiaily on the temperature

2

=P Y
Py =[5y fo@de, @n
-2 @
DD =] Aol @eh T2 do, (28
2
Bl = | —:To;mzf(w)@(q)cthi‘i’r—dw. 29y

and the p value is directly related to the derivative of the
action function S with respect to the R distance between
the reagents.

The ¢(q) function is given by Eq. (24) and takes into
account the fact that both centers between which a
particle tunnels participate in the same long-wave
vibrations of the medium (as in case 3 for the first
mechanism). In particular, the vibrations at the angle
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0 = arccos(qR/qR) = 0 to the R vector in modulations
of the barrier shape are presented less efficientlv than
the vibrations along the R vector.

In the case of the motion of reagents | and 2
correlated in the wp > T frequency region (g(g) ~ @?),
the temperature dependence of the rate constant has the
form

Ky - exp[~ Qs + (64/5) 0x( T /wp®)lexpl Dy + dy( T/op)*,(30)

dy = (16/3)Dy(0). O = (g, — P/B(0).
where Dy(0), B,(0) are given by Egs. (28) and (29) at
T=20

Third mechanism of a weak undcr-barrier friction
under adiabatic conditions can be considered as follows.
A particle that moves in the under-barrier region under-
goes the influence of surrounding atoms. Their vibra-
tions result in modulations of the potential barrier that is
overcome by the tunneling particle and, hence, in the
energy exchange with this particle. For consideration, it
is sufficient to determine the effective momentum trans-
mitted to the phonon system due to the interaction
with one of the atoms in the under-barrier region. For
this purpose, we may introduce the Wr,r;) interaction
with this atom that determines the barrier shape and
its modulations AV = V, M) (r; - r%) due to vibra-
tions. Here r is the radius-vector of a tunneling atom,
p =r1;~ 1Y r; is the position of the atom in the under-
barrier region, and rf is its equilibrium position.

Let us expand the adiabatic action S(r;r/) into the
tunpeling trajectory over the AV value; assuming that
V(r.r;) depends on the distance between the iunneling
particle and the disturbing atom /:

dz.

(r,-—r,")zj | dv

J o= -+ ————
S(r.r,) So o(z) dp

© {4

Integration was performed along the trajectory z of
the tunneling particle, which is assumed to be linear,
and v(z) is the "rate” of the particie in the under-barrier
region.

Let us present the arbitrary displacement of atom i in
the form of a superposition of normal vibrations of the
crystal and introduce the momentum pg, which is in-
stantly transmitted during the tunneling transition to the
mode with the wave vector gq.

Here it is necessary to take into account that the
atom which is present in the near-barrier region and
induces changes in the barrier shape participates in the
same long-wave vibrations as the medium in which the
tunneling particle moves. This condition appears in the
form of the cofactor Aq.p) = |l — e(ig-p)| in the inte-
grand for the effective momentum

dV
.= 15> Z

4 po(2) le(iq - piidz.

It can easily be shown that in this case, the tempera-
ture dependence of the K value is described by Eg. (26),
although the values are defined differently:

2
B ]
Py s ZMmﬂm)dQ"dm‘

P ©

1 .
DD = I;jk—;(;ﬂm)cthzr dwdQ,, (32)

-

_ 1A
BN = 2570

2 [¢t]
o*flo)cth 37 dodQ,.

It can be seen that the dependences on the o fre-
quencies (at w < @g), which are in integrands (32), are
the same as those in Egs. (27)—(29). Therefore, the
characteristic temperature dependences of K obtained
in this work are similar to those for the second mecha-
nism.

The consideration performed is appropriate under
the condition

&Lﬁ << 1, (33)

v
where / is the length of the tunneling path, and 7 is the
average "rate” of the particle in the under-barrier region.

Note that similar temperature dependences are also
obtained when effects of the nonadiabatic bond in mo-
tions of the light (tunneling) particle are taken into
account.

Mechanism of establishing the temperature dependence
of K by calculation from experimental datal’

Let us analyze the temperature dependence of the
rate constant (1) using the results obtained. According to
the data presented above (three mechanisms), the tem-
perature dependence of InK in the general case can be
presented in the following form:

K = lnky + CT* + CTP + G T0 + T8, (34)

where the equations for the coefficients C, (s = 4, 5, 6,
and 8) are given in Egs. (23), (30), and (32). Since the
temperature dependence of T® can be a result of differ-
ent statistically independent mechanisms, the (g coeffi-
cient is determined by the sum of contributions from
these mechanisms.

An exact calculation of the dvnamics of the irradi-
ated hydrogen crystal, in which reaction (I) occurs,
would allow one to determine the coefficients in Eg.
(34) and, comparing dependence (34) with the experi-
mental one. some mechanism could be preferred. Since
currently it is impossible 10 perform these calculations,
this problem can be solved using the values of the
coefficients in Eq. (34) and physically substantiated
values of the parameters of the experimental system. All
coefficients in Eq. (34) are functions of parameterse, P,
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and B(0) and depend strongly on wp {see formulas (23),
(30), and (32)).

First of all let us estimate the effective value of the
wp frequency that should be inserted into these equa-
tions. The hydrogen crystal belongs to the class of the
so-called quantum crystals in which the amplitude of
zero vibrations of molecules is comparable with the
distance a accessible for motion (a is the difference
between the intermolecufar distance and double van der
Waals radius of the molecule).2” Anharmonism of inter-
molecular vibrations is already manifested at very low
frequencies. For these crystals, it is not allowed to use a
linear approximation of the frequency spectrum for ob-
taining the Debye frequency

wp = Qon/d) - c. (35)

where ¢ is the sound velocity in the crystal, and d is the
tattice constant. For HD crystals, Eq. (35) gives wp =
80 K. In fact, the exact law of vibration dispersion of
vibrations in the hydrogen crystal is unknown. To find
the effective frequency wp in formulas (23), (30), and
(32), let us perform the following analysis.

In the simplified model of the hvdrogen crystal, only
the repulsive forces involved in the intermolecular inter-
action can be considered as the zero approximation, and
attraction can be considered as a distortion. As shown
below, for the unidimensional model of the crystal
consisting of repulsing balls, the spectrum of excitations
has the Fermi character and does not resemble at all the
Bose phonon spectrum. If we neglect the possibility of
the statistically improbable transition of these balls from
one chain into another in the three-dimensional model
of the crystal, the spectrum of the three-dimensional
crystal of repulsing balls also has the Fermi character.
The collective phonon Bose branch of the spectrum
appears only due to the existing attraction, and the op
value, which has a sense of the maximum photon en-
ergy, should approximately be determined by the aver-
age value of interparticle atrraction U, Knowing this
value,27 we can easily determine that op = 15—30 K.

According to Egs. (25)—(30), the general form of the
temperature-dependent terms in the equations for InkK
can be given as

(In K)J‘ -~ A;-(eph - P_r)z - T/mD)""/P_\" wp.

where s corresponds to the mechanisms considered
above, n, is the power of the temperature dependence
following from this mechanism, and A, is the numerical
factor. From the definition of P,, we have

P, ~ Map?8?,

where § is the effective displacement of centers of
vibrations. At @p ~ 20 K and § ~ 1 A, we obtain £ -
30 K. Then the factor in Eq. (34) is (p = PO/ P =
gpn’/ P = 10° K.

The thermal effect of reaction (1), related to the
difference of zero vibrations of HD and D, molecules, is

500 K. However, it should be kept in mind that a
portion of this energy, as mentioned above. can be
transformed into vibrational degrees of freedom of mol-
ecules involved in the reactions. Rotational transitions
can compensate a significant fraction of the energy
defect. At the same time, due to the fact that a possible
change in the rotational energy is quantified with a very
large increment (the energy of the first rotational level is
~60 K, and with an increase in the number of the level
the value of the rotational quantum increases), it is
improbable that the excitation of rotational degrees of
freedom exactly compensates the energy defect of the
reaction. Therefore, the energy transmitted into the
phonon subsystem is sufficiently high (in this case, it is
~300—3350 K). Note that the Gaussian approximation

gpne P> wp,

which underlies the equation derived above. is valid
precisely under these condition. As follows from the
estimations presented above, this inequality is fulfilled
sufficiently welfl.

We accomplished three physically substantiated vari-
ants of fitting the coefficients in formula (34) to the
experimental temperature dependencel”:

1) InK = InKy + CsT* + G T8,
2) Ink = lﬂK() + C(,Tﬁ + CST?‘,
3) InK = Inky + C,T* + GyTP.

Variant 1) corresponds to the combined manifestation of
the barrier modulation (see formula (30)) and rearrange-
ment of the phonon subsystem in case | (see formula
(25)). Variant 2) is attributed to the first mechanism
corresponding to the rearrangement of the vibrational
subsystem with combined manifestation of cases | and
3. Finally, variant 3) is a combination of the second and
third mechanisms.

The following values of the parameters were obtained
by fitting:

1) Ky = 16832, C, =0, Gy = 5-1075;
2) Ink
3 h‘lK()

it

1.2647, Cy = 21073, Cg = 8.245-1077;

1.24944, C, = 3.3- 1074, Cg = 1.097- 1078,

i

To determine which of the mechanisms best fits the
experimental temperature dependence, let us calculate
the C4. C;, and Cg coefficients -according to formulas
(25). (30), and (32), assuming g, = 300 K, P= 30 K,
and op = 20 K.

Accepting Cy = 3- 10~* (variant 3)), we obtain (see
formula (30)) the value of the parameter ™ < |, ie.,
the contribution from the barrier modulations to the
temperature dependence is negligible. This also corre-
sponds to variant 1) where C; = 0. In general, a strong
experimental temperature dependence of the rate con-
stant requires high powers of T in the exponent. The
results of fitting show that the lowest value of the power
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is six. Therefore, we do not consider case 2 from the first
mechanism. The Cy values in variants 1) and 2) are close
by an order of magnitude and satisfactorily described by
formuia (25) at the above presented values of the P and
op parameters. Variant 2) is inappropriate, because the
ratio of coefficients Co/Cy = 2.5+ 1073 can be provided.
according to the estimations by formula (23), only at a
very low value wp = 6—7 K. Of variants 1) and 3), the
first one can be considered preferable, because in it the
value Cy = 5-1077 is obtained according to formula
(25)atwp =20 K, AL =300 K, and P =30 K.and in
variant 3), to obtain Cg = 1075, the lower values op =
15 K and the higher values P = 3-10% K should be
used. Note that this minor difference in the accepted
g values gives a coefficient of 3.6 in the exponent due
to the high power wp.

Thus, it can be stated that a strong temperature
dependence of the rate constant at helium temperatures
15 determined by the rearrangement of the crystalline
phonon subsystem due to the tunneling reaction, with
the dependence of 3, on wp corresponding to case | in
the first mechanism.

Results and Discussion

The strong temperature dependence of InK can be
explained by two factors: a very strong temperature
dependence of the population of the initial states (the
continuous energy spectrum of degrees of freedom par-
ticipating in the transition) and a very strong {(exponen-
tial) dependence of the rate constant of the transition on
the energy of the initial state. Both these requirements
are fulfilled if modes that determine the temperature
dependence are low-frequency phonon modes with a
continuous spectrum and a power series (~7°) for the
temperature dependence of the number of initial states,
and the rate constants of the transition are determined
by the probability of changing the energy in a set of
these modes during the rearrangement of the subsystem
related to the transition. This rate constant is deter-
mined by the Frank—Condon tactors, which can depend
exponentially on the energy of the initial state. In addi-
tion, it is necessary that the energy release to the
phonon modes should be sufficiently high, g,, > wp.

We can see that for the description of the experiment
wp = 20 K should be accepted, and this is precisely the
wp value which follows from the qualitative consideration
of the vibrational spectrum in the hydrogen crystal.

When the value wp = 80 K proposed in the litera-
ture? is introduced into the Cy, G, and Cy coefficients
as the approximation of the linear law of dispersion to
the value of the wave vectors 2n/d (see formula (33)),
we obtain for the rate constant a plateau down to
temperatures <80 K, which strongly contradicts the ex-
periment. 17

It is intriguing that case (1) from the first mechanism
is preferable for the dependence of &v, on @ (§, =
const). In fact, the correlation §, ~ w is valid for long-

wave vibrations, but it is true in the general case only for
small displacements of §, or, in other words, for a
sufficiently rigid crystal. Due to softness of the hydrogen
crystal, the linear size L of the deformation region of the
crystal near the internodal atom is high (L > ). For all
phonons with the wave vector g, such as

qL = i/x, (36)

3, is independent of q. For hw = 2aficg 2 Ty =3 K (the
temperature dependence of the rate constant has previ-
ously been studied!” at 7> 3 K), inequality (36) gives
L 2 1/q = 2nhe/Ty ~ 5d. This value seems reasonable
for the linear size of the deformation region. In the
region of lower temperatures where longer-wave phonons
are significant, inequality (36) is distorted, and case 3},
4 ~ w, is preferable. However, in this temperature region
the Cg value is so low that the true low-temperature
plateau should be observed for the rate constant.

At T < op = 20 K. inhibition of an increase in InX
with temperature increase should be expected, but the
temperature of melting of the crystal falls in this tem-
perature region. However, it is of interest to continue
experiments to 7 — T,

Let us consider a one-dimensional chain of ¥ mutu-
ally repulsing structureless particles with mass m.
The Hamiltonian of the system can be written in the
form:

- 2N 2
H=-1_5 94 + U+
2m ;zl(ix'i'
) Nt .
+ Unlxs) + Ty (e ™ %) n
p=1

{O X 4= X,>d
Here Ulx,e — x,) = | X, =-x, =4, 2
where a is the linear size of the particle,
[0 x>0
Uiix)) = ]\w 5 =0,
0 xy<L
UN(XN) I PN x.’V =L, %))

where L is the chain length.

Evidently, according to Egs. (2) and (J3), the multidi-
mensional space in which the system is considered is
the interior of the N-dimensional polyhedron in which
0<x;sxsx3sxys L

Based on (/). (2). and (3), we establish that the full
wave function of the system w{xy, ..., Xy) possesses the
following boundary conditions:

I’ x = 0 ]
N = X, = X,tdy p=l.,N-L 9
[ xy = L
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The general form of yy that satisfies the Schrédinger
equation with Hamiltonian (/) and boundary conditions
() is the Slater determinant built on the functions of
free motion

y, =sin{n- T3 ) (3)
L7p

5, =% 0, I = LN~ L. (6
N
sin{n Iz ‘ sin(n Iz !
1[:'1/’ i Y Zx)
{_TV_ - / 1: N

Yy = Jo—sin ﬂff’] sin!n —X ) . %)
Iz A vy
[z
. n . . T . |
sinjm — %, Sm{nv—_—,\’v]
L' YLt

It can be readily understood that the boundary condi-
tions are met at the beundaries of the section due to the
form of functions (3), and during contact of the particles,
X4y = X,. due to the equality of two rows of determi-
nant (7). It can be seen that only at ny 2 ny = ... # ny do
the wave functions differ from zero, ie., only one condi-
tion of absolute collision of particles ((J3), (4)) resuits in
the Fermi wave function and Fermi spectrum.

Thus, for the energy of the system we have:

E =[x
\L

Hi LW IN

Ry # Ry £.% Ny,

and the Fermi energy is given by

v
Ep = L2 -(g} N3 = 1/3eN,
32m \L)

£ = ni/r2,
where [ = d ~ 2a, where d = [/N is the period of the
one-dimensional lattice.
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