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The temperature dependence of the reaction rate constant for tunneling transfer of an 
atomic particle in solid near absolute zero was studied. Different mechanisms describing the 
temperature dependence we,-e considered: reorg, anization of the medium, modulation of 
parameters of the potential barrier, and under-barrier friction. It was established that for the 
rate constant (K) at low temperatures the equation InK= InK 0 + C4 T4 + CsT 5 + CdT 8 ~" CsT 8 
is valid. Experimental data were compared with the theory. A good agreement is achieved 
when the quanlum nature of the hydrogen crystal is applied under the assumption of a 
predominant role of reorganization of the medium. 
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Many chemical reactions occurring at helium tem- 
peratures have been a subject of study in recent years. 
Prominent among these are reactions involving transfer 
of the H atom, which usually proceed via the tunneling 
mechanism. This is indicated by an anomalously high 
isotope effect and the finite low-temperature limit of 
chemical reactions. The detailed review and analysis of 
experimental and theoretical results have previously been 
reported.t.2 

Analyzing the temperature dependence of the rate 
constants of solid state reactions, three main tempera- 
ture intervals can be distinguished, t -4  in the low-tem- 
perature interval, both the particle transfer and the 
motion of the molecular environment are quantized. [n 
this interval, the temperature dependence of the rate 
constant is determined by the type of intermolecular 
vibrations of reagents. In the case of the local mode, the 
dependence has the form of a low-temperature plateau, 
and when the phonon continuous spectrum prevails, the 
logarithm of the rate constant is proportional to the 
temperature in a sufficiently high power (from the fourth 
to eighth power, see, e,g., Ref. 5). The next region 
corresponds to classical intermolecular motions and qUan- 
tized particle transfer. In this interval, the logarithm of 
the rate constant is proportional to the temperature. 
Finally, in the region of sufficiently high temperatures, 
both intermolecular vibrations and particle transfer show 
classical behavior. In this region, the temperature de- 
pendence of the rate constant is determined by the 
Arrhenius equation. 

Two main approaches to the description of solid 
state tunneling reactions can be distinguished: (a) ana- 
lytical method based on the modified theory  of 
nonradiative transitions 1,4-9 and (b) numerical method 
of computer simulation of the dynamics of tunneling 
transition based on the calculation of energy for the 
system moving along imaginary trajectories (see, e.g., 
Ref. 10 and literature cited in monographs2,1~ As a 
rule, exact data on the reaction system (the mult idimen- 
sional potential energy surface, quantum numbers of the 
final state) are unavailable; therefore, analytical ap- 
proaches that allow one to present experimental results 
qualitatively are used for the description of the regulari- 
ties of chemical reactions. In some cases, the theory can 
be compared with experimental data. i-3,~ 

In the low-temperature tunneling pathways, reaction 
routes deviate from the classical passways. A particle 
"cuts an angle" and tunnels through a higher, but nar- 
rower potential barrier rather than surmount the bar- 
rier. tt Using this mechanism, one can describe 1-3,~ 
experimental data on the temperature dependence of the 
rate constants of reactions with H atom transfer between 
heavy, reagents, t2- t6  

The pattern of the temperature dependence of the 
rate constant depends on the specific features of reorga- 
nization of the medium, under-barrier f r ic t ion,  and 
nonadiabatic effects, which are also manifested at tem- 
peratures close to absolute zero. These temperature de- 
pendences have recently been observed in several ex- 
perimental works (see Ref. 17 and literature cited herein) 
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in which solid state reactions of H atoms (deuterium) in 
molecular hydrogen (deuterium) were studied. The for- 
mation of atoms occurred during 7-irradiation of H 2, 
HD, and D 2 crystals. In particular, the temperature 
dependence of the rate constant of the reaction 

H D  + D --',. H + D 2 I,[) 

was studied in the 2.6--6.5 K interval. 17 
This work applies the methods of the theory of 

nonradiative transitions t,s-7 to the detailed analysis of 
the role of long-wave phonons in tunneling transfer 
reactions at helium temperatures. We attempted to de- 
termine the characteristic temperature dependences of 
the rate constants of solid state reactions (K) in this 
region. Although investigation of the kinetics of chemi- 
cal reactions with hydrogen transfer near absolute zero 
was a subject of many studies, 13,18-22 the temperature 
dependence of the rate constant has been obtained only 
in one work 17 and, hence, it is of interest to compare 
our calculated data with the results of that work. 

Method of calculation of the transition amplitude 

Effects of various factors on the K value can be 
taken into account on the basis of the general theory of 
tunneling transitions in the multi-particle system. The 
method of determination of the amplitude of tunneling 
transition of one of the particles in the multi-particle 
system based on using the kippmann--Schwinger equa- 
tion has previously been developed. 6-7,z3 

Considering tunneling of heavy particles, one can 
use the adiabatic approximation that is fulfilled under 
the conditions that all transitions of heavy particles 
occur in the same electron state. The following inequal- 
ity is the necessary condition of validity of the adiabatic 
approximation: 

AFI/A << 1. (I) 

where Aft is the amplitude of multi-particle tunneling 
transition from state i to state f, and A is the lowest 
difference between two adiabatic terms of the system. 
Since An contains an exponentially low factor related to 
tunneling of one of the atoms, condition (I) is almost 
always fulfilled. The Hamiltonian of the system is writ- 
ten as follows: 

I T I . + 

The atomic system of units is used hereinafter; summa- 
tion is performed over all particles involved in the 
transition, M n is the mass of the nth particle, A,, is the 
Laplacian over coordinates of the nth particle, and 
U({r}) is the multidimensional adiabatic potential en- 
ergy, where {r} means the set of all coordinates of the 
system. The initial (i) and final (f) states are determined 
by two local minima on the multidimensional surface of 
the potential energy. The initial ~i and final ~r wave 

functions can be considered with a high accuracy to be 
functions of the harmonic oscillator corresponding to 
normal coordinates qi, qe through which deviations 
tr-ri} and {r-rr} of natural coordinates from the equilib- 
rium positions r i and r r, respectively, are expressed. The 
energy E > e. where r is the energy of the full system, 
which is retained in the transition, can be defined in 
such a fashion so that in the region of coordinates {r}, 
determined by the inequality U({r}) < E, the known 
oscillator functions of normal coordinates sufficiently 
exactly approximate the initial and final wave functions. 
Let us name these regions Li(E) and Lr(E). 

The equation for the amplitude of transition A n has 
the following form6,7,z3: 

Aft = ~d{r} ~d{r'}-{V~{r'};a)lU(I~)- ~ x 
L~(E) LF(E) 

x G~({r},{r'};~k'[U({r})- EJvi({r};~)}. (3) 

Here Gv is the multidimensional Green function at the 
energy for the Hv Hamiltonian 

13- I 
Hv = -.T.y-~T~~,, + v({~}), (4) 

where 

['U({r}) {r} g L..(E), Lr(E) 
Id{r}) = IE  {r} ~ L~(E). LF(E) " (5) 

Some "randomness" in choosing E does not result in 
an ambiguous determination of A n . This follows from 
the fact that a change in the E value also implies the 
redetermination of the V potential and thus, the divi- 
sion of the full Hamiltonian into the "zero" part Hv and 
the "interaction" ( U ( { r } ) -  E) changes. However, 
the Lippmann--Schwinger equation, on the basis of 
which Eq. (3) was obtained, is invariant relative to this 
division. 

Thus, the calculation of the amplitude of transition 
is entirely reduced to the determination of the Green 
function Gv({r},{r'};e) and further quadratures. Note 
that according to the definition of V({r}) in Eq. (5) and 
the tact that ~ < E, the Green function "lies" entirely in 
the under-barrier region. As has been shown, z4 if the 
classical trajectory connecting points {r} and {r'} lies 
completely in the above- or under-barrier region, there 
is a sufficiently simple calculation algorithm for the 
determination of the quasi-classic Green function, which 
was used in the calculation program described earlier, z~ 
The inequality 

42m(V-c) ,I t >> I, (6) 

which determines the applicability of the quasi-classical 
approximation (here / t is the characteristic length of the 
trajectory along the tunneling coordinate; m is the mass 
of the tunneling particle), is valid for pronounced tun-  
neling transitions. Therefore, the Green function in the 
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amplitude of  Eq. (3) can be calculated, and the determi- 
nation of  the ampli tude is reduced to quadratures. 

Equation (3) together with definitions (4) and (5) 
has a clear physical meaning. The amplitude of  the 
tunneling transition A n from the known in the L~ region 
initial state ~r to the fixed in the Lf region final state ~l~f 
is reduced to the standard form: 

A,~ = <~d01V~>, (7) 

where the effective in te rac t ion  U is determined by the 
equality: 

L~' = [U(Ir}) - El" Gv(tri},{r'};v-)[U({r'}) - El. (8) 

The Green function G v is determined by the value of  
the V potential in the "tunneling" region. Thus, the 
interaction resulting in the transition according to for- 
mulas (7) and (8) was not chosen arbitrarily. The U 
operator is similar to the known Bardin operator  in the 
model of  one-part icle  tunneling. 

The method proposed imposes no limitation:~ on the 
shape of the barrier U({r}), the dimensionality of  the 
system in which the tunneling transition occurs, and the 
energies of  the initial and final states. The latter can be 
any initial and final states of  the system of  oscillators, 
i.e., the method can be used for calculations of  "state to 
state" transitions. Note that the widely used "instantorf' 
method of determinat ion of  the probability of  a transi- 
tion 10 deals only with the ground states of  oscillators 
and a sufficiently restricted class of  analytical equations 
for the shape of  the potential  barrier. 

The multi-particle tunneling transition is reduced, in 
the majority of  cases, to the tunneling transition of  only 
one particle (H or D atom),  which is not necessarily 
one-dimensional over the tunneling coordinate r t. Over 
coordinates of other particles {rnt}, the characteristic 
regions in the initial (L i) and final (Lf) states overlap. 
The characteristic height o f  the tunneling barrier U is 
much higher, as a rule, than the energy AE transmitted 
into "non-tunneling" degrees of freedom. When the 
following inequality is fulfilled: 

(where / t is the tunneli.ng distance), adiabatic uncou- 
pling of  tunnel ing and non- tunnel ing coordinates is 
possible, and the equation for the Green funct ion can be 
written in the form 

Gv(Iri},{r'};~) -~ ~({r,~t} - {r'n~}) �9 G(r~,r~',{rnt};~ O, (10 )  

5(tro,} - {r',,}) = ]-I,5 (r~, - r,,'). 
07 

where index m passes through all non- tunnel ing (nt) 
coordinates. 

The Green funct ion G(rt.rt ' ,{rnt},s 0 over tunnel ing 
variables depends on the ensemble of  non-tunneling 
variables {rnt} and energy ~t as on the parameters; e t is 

the effective energy of  a non- tunnel ing panicle  that 
depends on the energy exchange in centers I and 2. 6 
However, in many calculations, it is accepted to be E, = 
I/2(Et + ~ )  (El and E 2 are the bonding energies o f the  
tunneling particle in centers 1 and 2, respectively) and 
independent of  the temperature and parameters of the 
medium. The effects related to the temperature depen- 
dence of st are outside the framework of  the adiabatic 
approximation and will not be considered in this work. 
Inequality (9) is a condition of  the so-called double 
adiabatic approximation,  ] according to which non-tun-  
neling atoms move much more slowly than the tunnel- 
ing atom, i.e., the tunneling transition occurs at station- 
ary nuclei (see formula (10)). Then the integration is 
performed over the coordinates o f  non-tunnel ing atoms 
(a slow subsystem): 

Aft = ~d{rnt} "~Idrtdrt'~If({rn,},q)b'd{rnt},rt) • 

• Gv(rt,rt';{rot};zt)" U~({rnO.rt')~,,({rn,},rt'). (I t)  

It is ollen the case when the tunneling {rt} and non- 
tunneling {rnt} degrees of freedom are divided in the 
initial and final states that 

~ i . f ~ { r } )  - V i . t < { r n t } )  - ~ r  ( 1 2 )  

Then Eq. (I  1) for the amplitude Afi can be writ ten in a 
more compact form: 

.4~ = <~dilr,,})!A=~(lr,,})lv~({r,,})>, (t3) 

where Aad({rnt}) is the amplitude o f  the adiabatic tunnel- 
ing transition at a fixed position o f  the coordinates of  
the "heavy" (non-tunnel ing)  subsystem {rnt}, which can 
be presented in the following form: 

A a e ( { r n t } )  = .~[drtdr,: '(v({r,}r)Ud{rntl,rt) x 

x Gv(rt.r~';{rnt};s O. U i ( { r n , } , r t ' ) ~ i ( q ' ) > .  ( I 4 )  

Due to a low value of the tunneling amplitude An 
and the quasi-continuous spectrum of  the system be- 
cause of the part icipat ion of many non-tunnel ing vari- 
ables, the K rate constant of the tunneling transition is 
determined by the Fermi "gold rule": 

K = 2nAvi~ ]Afi[23(af- ~i)- (15) 
f 

Equation s (3), (14), and (15) are the basis.for the 
determination of  the t empera tu re  dependence of the 
rate constant of  tunneling transitions in the condensed 
matter. At low temperatures, the transition Occurs mainly 
from the ground state cPi of the quantum tunneling 
system. According to Eqs. (13) and (15), the tempera- 
ture dependence in the low-temperature limit is com-  
pletely determined by the low-energy states of  the heavy 
subsystem (medium) on which the ampli tude of transi- 
tion Aft depends. For  averaging the equilibrium initial 
states of the heavy subsystem are used. 
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Mechanisms of the temperature dependence 

The tunneling transition is accompanied,  as a rule, 
by the rearrangement of  the slow nuclear subsystem, 
which is manifested in the difference of wave functions 
/1/i and gt r in Eq. (13). This rearrangement and related 
energy of  reorganization of  the medium result in a 
strong temperature dependence of  the transition rate 
c o n s t a n t .  

In addition, the probability of  the tunneling transi- 
tion strongly depends on the barrier parameters, which 
can vary substantially during intermolecular vibrations, 
resulting in a change in the distance between the re- 
agents. The tunneling transition occurs most probably 
when two reagents approach within the shortest dis- 
tance. This specific feature of  the dynamics of  the 
tunneling transition has previously been considered, s It 
has been shown that intermolecular motions give an 
anomalously strong temperature dependence of the rate 
constant,  and this provides a good agreement between 
the theory and experiment of  the tunneling H atom 
transfer between two heavy particles. 

The next specific feature of  the process is that a 
particle moving in the under-barr ier  region experiences 
the effect of surrounding atoms (under-barr ier  friction). 
The number of  atoms active in this respect is usually 
low. The continual models that describe under-barrier  
friction are summarized in the review. 26 To find a 
temperature dependence of  the tunneling transition near 
absolute zero and related to the under-barr ier  friction, 
one should know how the interaction of  phonons with a 
particle resulting in a change in the energy of this 
tunneling particle depends on the frequency o f a  phonon. 
For this purpose, it is necessary to consider the true 
Hamiltonian rather than the model for the system in 
which the length of  the tunneling path lr is comparable 
with the lattice constant d. Such a consideration will be 
made below. 

The study performed is based on the successive 
analysis of three (distinguished above) mechanisms of  
the process. 

i. Rearrangement of  the slow vibrational subsystem 
during the transition of  a tunneling particle from center 
I to the under-barrier region and from the under-barrier  
region to center 2. 

2. Interaction of a tunneling particle with vibrations 
in centers I and 2, which changes the shape of  the 
potential, barr ier  and the tunneling..transfer.length 

3. Energy exchange of  a tunneling particle with 
phonons in the under-barrier  region (under-barrier  fric- 
tion). 

In the general case, all these mechanisms are mani-  
fested simultaneously. However, as a rule, one of them 
is predominant.  Then the correlation of  different mecha- 
nisms can be ignored with good accuracy. Therefore, 
they can be considered individually, and in the analysis 
of  mechanisms I and 2, the results of  the previous 
studies can be used. s,7 

A portion of energy evolved in reaction (1) can be 
transmitted to rotational degrees of freedom of  mol- 
ecules localized in centers 1 and 2, because hydrogen 
molecules rotate freely in sites of the lattice of the 
crystalline matrix. 27 Since the temperature dependence 
is also determined by the initial distribution over rota- 
tional levels, and the value of  a rotational quantum 
(-60 K) exceeds by an order of  magnitude the tempera-  
ture range under consideration, the rotational system 
does not contribute to the character of the temperature 
dependence of the rate constant of  solid state reactions. 
its influence lies only in the redistribution of  the energy 
transmitted to the rotational and vibrational degrees of  
freedom of the crystal. The slow vibrational (phonon) 
subsystem, which will be considered hereinafter, exerts 
the main effect on the character  of  the low-temperature 
dependence of K. 

First mechanism takes into account the distortion of  
the phonon subsystem during transfer of a particle. A 
light particle, removed from one localized state to an- 
other, results in the rearrangement of the slow nuclear 
subsystem, which is expressed as a change in the posi- 
tions of the centers of vibrations of  the nuclei and (in 
the general case) their frequencies. 

Neglecting the dependence of Aad({rnt}) in Eq. (13) 
on coordinates {rnt}, we can reduce the analysis of  the 
role of this mechanism to the calculation of  the Franck- -  
Condon factors 2s'29 that are determined by overlapping 
integrals of wave functions in the initial and final states 
of  the system: 

v = (Xvr(~v)iZ,/~,% _ C~)>. ~16) 12 ti 

Here fly are the changes in the position of  the center of  
vibration at the i ~ f transition (the changes in the 
frequencies are neglected, as usual), and Zv f,i are the 
final and initial vibrational wave functions. 

For a large energy release, this transition can be 
characterized by the p2/2M magnitude (M is the effec- 
tive mass), which coincides, in tile unimodal case, with 
the energy of the vertical transition in the corresponding 
parabolic potentials (here p is the effective transmitted 
momentum). 

The strongest dependence o f  the rate constants of  
the reactions under consideration on the temperature T 
originates under the condit ions o f  a strong interaction of  
a tunneling particle with a heavy subsystem. In this case, 
the temperature dependence o f  K is determined by the 
prob~.bilit)/of t1'angfe~" o f t h e  %h energy to  p h o n o n s - o f  
the lattice: 

K ~ exp[-(eph - p)2/~]. (17) 

Equation (17) is the generalization of  the known 
Marcus formula 3~ to the region of thermal energies, 
comparable with energies of  phonons in the crystal. 
Note that the Gaussian approximation of  type  (17) in 
the theory, of radiative and nonradiative transitions with 
a large energy release was developed by independent 



1886 Russ.Chem.BuU,, Vol. 48. No. I0, October, 1999 Ivanov et at. 

methods in various areas of  physics. 3~ Here the P 
value (energy of  reorganization of the medium) is tem- 
perature-independent,  and the 1~ function tends to a 
constant value at T ~ 0 and is proportional to the 
temperature (1~ ~ 7")at k T  >> 03D (03D is the Debye 
frequency). 

The temperature dependence of  the rate constant of  
the process is mainly determined by the 13 function in 
Eq. (17), which has the following form for the consid- 
ered mechanism of  the medium effect: 

I~ = ~ o ) 2 f ( ( o ) r  d(a- (18) 
M(D Z l  

Here rio)) is the spectrum of  vibrations (in the case of  
the Debye spectrum rico) = 3o~2/03D3). The energy of 
reorganization of  the medium in Eq. (17) is determined 
as follows: 

P .= [ ~ f l ( a ) d o .  (19) 

Let us divide the region of integration over co in Eq. 
(18) into two intervals, 0 - - 2 7  and 27--03 o, accepting 
coth(03/2T) = 27 /o  in the Ist interval and coth(o/27)  = 
1 in the 2nd interval. This procedure is approximate, but 
at this stage of  study it is satisfactory, because the exact 
calculation can result only in some refinement of  the co- 
efficients in the expansion of 13 with respect to powers T. 

The p(03) values in Eqs. (18) and (19), characterizing 
the efficiency of  vibrational transition in the v mode 
with the 03 frequency, can be determined from the 
correlation 

[Mo~28v2(O)]/2 = p2(o)/2M, (20) 

which gives 

p(o~) = Mo35v(o) ). (2t) 

The form of  the fiv(o~) function, which determines 
the displacement  of  vibrational centers in the initial and 
final states, is unknown. It can be obtained only after 
detailed calculat ion of  the mult i-dimensional  surface of 
the potential  energy U({r}). 

Therefore, we consider three particular cases: 
I) 5v(03) = 50 = const, i.e., displacements are the 

same for all modes,  then p - M03 and 

1~(1) = [3~(t)(0)[l + (64/5)(T/OD)61, (22) 

where 13~) = (I/2)MoD3802, and the enemy of reorga- 
nization of  the medium 

p~(~) = (3/5)Mo~03802. 

where the lower index at [5 and P designates the mecha- 
nism, and the upper index designates different particular 
cases of  the dependence of  8v on r 

2) 8v(03)4M03 = x = const, i.e., the displacements 
in units of  zero vibrations for e a c h m o d e  are the same; 
h e r e p ~  ~ and 

[~l(2) = 13(21(0)11 + 8(T/oD)~], (23) 

where 131(2)(0) = (3/5)C2OD 2, and Pl t2~ = (3/8)C2WD; 
3) 8~(o) = zoo, where z = const. 
This version is the most probable at very low fre- 

quencies, because the centers localized at points R[, R 2 
participate in long-wave vibrations of  the crystal, and 
the distinction of  their action on the surrounding centers 
is expressed by the factor 

,,p(q) = (1/4x)fle~qr2 - eiqr~l_MD. (24) 

(q is the wave vector o f  a phonon),  which can be 
included in integrands (18) and (19) for 13 and P. Then 

[3tO) = 13lo)(0)[1 + (256/7)(T/a~D)8], 

where 131(2)(0) = (3/8)Mz2a~D 5. In this case, Pi (2~ = 
(3/14)Mz2o~t~ 4. 

For the cases considered above, the temperature 
dependence of K is the following: 

Kl(l) - exp[-Ql(I) + (64/5)QI(I)(T/~D)61, 

KII2) -exp[-Ql~2~ -~ 8Q1(2) ( T/03D)Sl, 

KI(3) -expI-Q~(3) + (256/7)Q1(3)(T/oo)81. (25) 

where the QI (S) values are determined by the equation 

Q,(S~ = (cph _ p s):/ps(o). 

Second mechanism reflects the influence of  modula-  
tions of the potential barrier due to vibrations of  the 
reagents, s In this case, the temperature dependence o f  
the rate constant is related to the temperature effect on 
the amplitude of  intermolecular  vibrations and energy 
transfer cph (~ph >> C0) tO the phonon subsystem. The 
dependence can be described by the equation 

K-, - e TM 7 3 e x p l - - ( % h  - -  P2)2/~32( T')], ( 2 6 )  

which differs from Eq. (17) by the appearance of  the 
additional factor e D~T) in Eq. (26) that depends expo-  
nentially on the temperature 

? 

(27) 

(28) 

? 
= ( 2 9 )  

and the p value is directly related to the derivative of  the 
action function S with respect to the R distance between 
the reagents, 

The q~(q) function is given by Eq. (24) and takes into 
account the fact that both centers between which a 
particle tunnels par t ic ipate  in the same long-wave 
vibrations of the medium (as in case 3 for the first 
mechanism). In particular,  the vibrations at the angle 
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0 = arccos(qR/qR) e 0 to the R vector in modulations 
of the barrier shape are presented less efficiently than 
the vibrations along the R vector. 

In the case of the motion of reagents 1 and 2 
correlated in the co D >> T frequency region (q~(q) ~ c0:), 
the temperature dependence of the rate constant has the 
form 

K 2 - expl-Q2 + (64/5)Q2( T6/(oD6)]exp[D2 + d2(770)0)4,(30) 

d~ = (16/3)D2(0). Q2 = (~,oh- P2)2/~?(0) �9 

where D2(0), 132(0 ) are given by Eqs. (28) and (29) at 
T = 0 .  

Third mechanism of a weak undcr-barrier friction 
under adiabatic conditions can be considered as follows. 
A particle that moves in the under-barrier region under- 
goes the influence of surrounding atoms. Their vibra- 
tions result in modulations of the potential barrier that is 
overcome by the tunneling particle and, hence, in the 
energy exchange with this particle. For consideration, it 
is sufficient to determine the effective momentum trans- 
mitted to the phonon system due to the interaction 
with one of the atoms in the under-barrier region_ For 
this purpose, we may introduce the V(r,r~) interaction 
with this atom that determines the barrier shape and 
its modulations A V = VpV(r,ri)(r i - ri ~ due to vibra- 
tions. Here r is the radius-vector of a tunneling atom, 
p = r i - ri ~ r~ is the position of the atom in the under- 
barrier region, and r~ ~ is its equilibrium position. 

Let us expand the adiabatic action S(ri, r/~ into the 
tunneling trajectory_ over the AV value; assuming that 
V(r,ri) depends on the distance between the tunneling 
particle and the disturbing atom i: 

(r- - r~ z 1 dV 
S(r,ri ) = So + . .. ~ Z, dz. v(z) dp p 

Integration was performed along the trajectory z of 
the tunneling particle, which is assumed to be linear, 
and u(z) is the "rate" of the particle in the under-barrier 
region. 

Let us present the arbitrary displacement of atom i in 
the form of a superposition of normal vibrations of the 
crystal and introduce the momentum pq, Which is in- 
stantly transmitted during the tunneling transition to the 
mode with the wave vector q, 

Here it is necessary to take into account that the 
atom which is present in the near-barrier region and 
induces changes in the barrier shape participates in the 
same long-wave vibrations as the medium in which the 
tunneling particle moves. This condition appears in the 
form of the cofactorflq,p) = [I - e(iq'p)[ in the inte- 
grand for the effective momentum 

f d F  z . Pq = "dp pu(z)}e(tq- p)]dz. (3 I) 

It can easily be shown that in this case, the tempera- 
ture dependence of the K value is described by Eq. (26), 
although the values are defined differently: 

) 
l t P,~ 

P3 = T~x J 2T~f(co)d~qdco. 

2 

~ - /~ '1 (0  .' (O _ 1  

1 r Pq ~ co 3(7") = ~ j ~ co'~./(co)ct h ~ dmdQq. 

It can be seen that the dependences on the o) fre- 
quencies (at co << coo), which are in integrands (32), are 
the same as those in Eqs. (27)--(29). Therefore, the 
characteristic temperature dependences of K obtained 
in this work are similar to those tbr the second mecha- 
nism. 

The consideration performed is appropriate under 
the condition 

coD/'{ 
b" << 1, (33) 

where l t is the length of the tunneling path, and 5 is the 
average "rate" of the particle m the under-barrier region. 

Note that similar temperature dependences are also 
obtained when effects of the nonadiabatic bond in mo- 
tions of the light (tunneling) particle are taken into 
account. 

Mechanism of establishing the temperature dependence 
of K by calculation from experimental data 17 

Let us analyze the temperature dependence of the 
rate constant (1) using tile results obtained. According to 
the data presented above (three mechanisms), the tem- 
perature dependence of InK in the general case can be 
presented in the following form: 

InK = InK o + C4T 4 + C575 + C~T 6 + C87 s, (34) 

where the equations for the coefficients Cs (s = 4, 5, 6, 
and 8) are given in Eqs. (25), (30), and (32). Since the 
temperature dependence of 76 can be a result of differ- 
ent statistically independent mechanisms, the C 6 coeffi- 
cient is determined by the sum of contributions from 
these mechanisms. 

An exact calculation of the dynamics of the irradi- 
ated hydrogen crystal, in v, hich reaction (I) occurs, 
would allow one to determine the coefficients in Eq. 
(34) and, comparing dependence (34) with the experi- 
mental one, some mechanism could be preferred. Since 
currently it is impossible to perform these calculations, 
this problem can be solved using the values of the 
coefficients in Eq. (34) and physically substantiated 
values of the parameters of the experimental system. All 
coefficients in Eq. (34) are functions of parameters e, P, 
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and !3(0) and depend strongly on coo (see formulas (25), 
(30), and (32)). 

First of all let us estimate the effective value of the 
co D frequency that  should be inserted into these equa- 
tions. The hydrogen ery. stal belongs to the class of  the 
so-called quantum crystals in which the amplitude of  
zero vibrations of  molecules is comparable with the 
distance a accessible tbr motion (a is the difference 
between the intermolecuiar distance and double van der  
Waals radius of  the molecule)_ z7 Anharmonism of  inter- 
molecular vibrations is already manifested at very low 
frequencies. For  these crystals, it is not allowed to use a 
linear approximation of  the frequency spectrum for ob- 
taining the Debye frequency 

mo =- ( 2 ~ / d )  . c. (35) 

where c is the sound velocity in the crystal, and d is the 
lattice constant. For  HD crystals, Eq. (35) gives co D -: 
80 K. [n fact, the exact law of  vibration dispersion of  
vibrations in the hydrogen crystal is unknown. To find 
the effective frequency O)D in formulas (25), (30), and 
(32), let us perform the following analysis. 

In the simplified model of  the hydrogen crystal, only 
the repulsive forces involved in the interrnolecular inter-  
action can be considered as the zero approximation, and 
attraction can be considered as a distortion. As shown 
below, for the unidimensional model of the crystal 
consisting o f  repulsing balls, the spectrum of  excitations 
has the Fermi character  and does not resemble at all the 
Bose phonon spectrum. If we neglect the possibility o f  
the statistically improbable transition of these balls from 
one chain into another  in the three-dimensional model 
of  the crystal, the spectrum of  the three-dimensional  
crystal of repulsing balls also has the Fermi character.  
The collective phonon Bose branch of the spectrum 
appears only due to the existing attraction, and the coo 
value, which has a sense of the maximum photon en-  
ergy, should approximately be determined by the aver- 
age value of  interparticle attraction Uat t. Knowing this 
value, 7-7 we can easily determine that co D = 15--30 K. 

According to Eqs. (25)--(30), the general form of  the 
temperature-dependent  terms in the equations for InK 
can be given as 

(tnK)s - As(epl~ - Ps) 2" ( T/COD)~VPs" COD, 

where s corresponds to the mechanisms considered 
above, n s is the power of the temperature dependence  
following from this mechanism, and As is the numerical  
factor. From the definition of  P~., we have 

P s -  MC~ 2~i2, 

where 8 is the effective displacement of centers o f  
vibrations. At co D - 20 K and 8 - 1 ,~., we obtain Ps - 
30 K. Then the factor in Eq. (34) is (Eph -- Ps)2/Ps =- 
~ph2/Ps = 10 3 K. 

The thermal effect of  reaction (I), related to the 
difference of  zero vibrations of H D and D 2 molecules, is 

500 K. However, it should be kept in mind that a 
portion of this energy, as mentioned above, can be 
transformed into vibrational degrees of  freedom of  mol-  
ecules involved in the reactions. Rotational transitions 
can compensate a significant fraction of  the energy 
defect. At the same time, due to the fact that a possible 
change in the rotational energy is quantif ied with a very 
large increment (the energy of the first rotational level is 
-60  K, and with an increase in the number  of  the level 
the value of the rotational quantum increases), it is 
improbable that the excitation of  rotational degrees of 
freedom exactly compensates the energy defect of  the 
reaction. Therefore, the energy transmitted into the 
phonon subsystem is sufficiently high (in this case, it is 
-300--350 K). Note that the Gaussian approximat ion 

~ph, P >> COD, 

which underlies the equation derived above, is valid 
precisely under these condition. As follows from the 
estimations presented above, this inequality is fulfilled 
sufficiently well. 

We accomplished three physically substantiated vari- 
ants of fitting the coefficients in formula (34) to the 
experimental temperature dependencelT: 

1) InK = InK 0 + C~7 ~ + CoT 6, 

2) InK = InK 0 + C67 ~ + CsT s, 

3) InK = InK0 + C4~ + C~T 8. 

Variant 1) corresponds to the combined manifestation of 
the barrier modulation (see formula (30)) and rearrange- 
ment of the phonon subsystem in case I (see formula 
(25)). Variant 2) is attributed to the first mechanism 
corresponding to the rearrangement of  the vibrational 
subsystem with combined manifestation of  cases 1 and 
3. Finally, variant 3) is a combination of  the second and 
third mechanisms. 

The following values of the parameters  were obtained 
by fitting: 

I) InK0 = 1.6832, 6"4 = 0, C 6 = 5" 10-5; 

2) InK0 = 1.2647, C 6 = 2" 10 -5, C 8 = 8.245- 10-7; 

3) InK~ = 1.24944, C4 = 3.3- 10 -4 , C 8 = 1.097. l0 -6. 

To determine which of the mechanisms best fits the 
experimental temperature dependence,  let us calculate 
the C4. C6, and Cs coefficients accord ing  to  formulas 
(25). (30), and (32), assuming %h = 300 K, P -= 30 K, 
and COD ~ 20 K. 

Accepting C4 = 3" 10 -4 (variant 3)), we obtain (see 
formula (30)) the value of the parameter  S" << 1, i.e., 
the contribution from the barrier modulat ions to the 
temperature dependence is negligible. This also corre-  
sponds to variant I) where (74 =- O. In general,  a strong 
experimental temperature dependence of  the rate con-  
stant requires high powers of T in the exponent .  The 
results of fitting show that the lowest value of  the power 
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is six. Theretbre, we do not consider case 2 from the first 
mechanism. The C6 values in variants I) and 2) are close 
by an order of magnitude and satisfactorily described by 
formula (25) at the above presented values of the P and 
coo parameters. Variant 2) is inappropriate, because the 
ratio of coefficients C 6 / C  s = 2.5.10 -3 can be provided. 
according to the estimations by formula (25), only at a 
very low value coD -= 6--7 K. Of variants 1) and 3), the 
first one can be considered preferable, because in it the 
value ('6 = 5 -10  -5 is obtained according to formula 
(25) at cod = 20 K, bE  = 300 K, and P = 30 K, and in 
variant 3), to obtain Cs --- 10 -6, the lower values coo -: 
15 K and the higher values P _= 3 - l04  K should be 
used. Note that this minor difference in the accepted 
coo values gives a coefficient of 5.6 in the exponent due 
to the high power co D. 

Thus, it can be stated that a strong temperature 
dependence of the rate constant at helium temperatures 
is determined by the rearrangement of the crystalline 
phonon subsystem due to the tunneling reaction, with 
the dependence of 8 v on cod corresponding to case I in 
the f irs t  mechanism. 

R e s u l t s  and D i s c u s s i o n  

The strong temperature dependence of InK can be 
explained by two factors: a very strong temperature 
dependence of the population of the initial states (the 
continuous energy spectrum of degrees of freedom par- 
ticipating in the transition) and a very strong (exponen- 
tial) dependence of the rate constant of the transition on 
the energy of the initial state. Both these requirements 
are fulfilled if modes that determine the temoerature 
dependence are low-frequency phonon modes with a 
continuous spectrum and a power series ( - T  3) for the 
temperature dependence of the number of initial states, 
and the rate constants of the transition are determined 
by the probability of changing the energy in a set of 
these modes during the rearrangement of the subsystem 
related to the transition. This rate constant is deter- 
mined by the Frank--Condon factors, which can depend 
exponentially on the energy of the initial state. In addi- 
tion, it is necessary that the energy release to the 
phonon modes should be sufficiently high, %h >> coko. 

We can see that for the description of the experiment 
cod -= 20 K should be accepted, and this is precisely the 
co D value which follows from the qualitative consideration 
ofihe vibrational spectrum in the hydrogen crystal. 

When the value co D = 80 K proposed in the litera- 
ture z7 is introduced into the C4, C 6, and C 8 coefficients 
as the approximation of the linear law of dispersion to 
the value of the wave vectors 2 ~ / d  (see formula (35)), 
we obtain for the rate constant a plateau down to 
temperatures _<80 K, which strongly contradicts the ex- 
periment. ~7 

It is intriguing that case (I)  from thefirst mechanism 
is preferable for the dependence of By,, on m (3 v = 
const). In fact, the correlation 8 v - to is valid R)r long- 

wave vibrations, but it is true in the general case only tbr 
small displacements of 8v or, in other words, for a 
sufficiently rigid crystal. Due to softness of the hydrogen 
crystal, the linear size L of the deformation region of the 
crystal near the internodal atom is high (L ~," d). For all 
phonons with the wave vector q, such as 

qL >_ l/n, (36) 

8,, is independent ofq. For ~)co = 2~hcq >_ To = 3 K (the 
temperature dependence of the rate constant has previ- 
ously been studied t7 at T > 3 K), inequality (36) gives 
L >_ I /q  = 2=J'~c/T 0 - 5d. This value seems reasonable 
for the linear size of the deformation region. In the 
region of lower temperatures where longer-wave phonons 
are significant, inequality (36) is distorted, and case 3), 
8 ~ co, is preferable. However, in this temperature region 
the Cs value is so low that the true low-temperature 
plateau should be observed for the rate constant. 

At T_< co D _= 20 K, inhibition of an increase in InK 
with temperature increase should be expected, but the 
temperature of melting of the crystal falls in this tem- 
perature region. However, it is of interest to continue 
experiments to T ~  Tpt. 

Let us consider a one-dimensional  chain of N mutu-  
ally repulsing structureless particles with mass m. 
The Hamiltonian of the system can be written in the 
form: 

~q = _ t," 5- d-' ~ + 2m i~ <tr-" Ul(xt) 

* UN(Xx) + Y U(Xp+~ - xp). 
p=l 

(I) 

HereU(x, ,+ _ . x , o = { O  X,o*l-xp >a 
Xp+ 1 = - - ) fp  = a 

where a is the linear size of the particle, 

(2) 

l0 x 7 > 0  
Uz(xl) = )~, x t = O  , 

{ O X N < L  
U~x.u) = X,v = L, (3) 

where L is the chain length. 
Evidently, acco.rdingto Eqs. (7) and ( ~ ,  the_ multidi_- 

mensional space in which the system is considered is 
the interior of the N-dimensional polyhedron in which 
O <_x t <_x 2 < x 3 <-xN<- L. 

Based on (/), (2), and (3), we establish that the full 
wave function of the system ~v(xl . . . .  , X,v) possesses the 
following boundary conditions: 

~r = 0 t = x p + d  �9 p = I ..... N -  I. (4) 

= L 
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The general  form o f~ .v  that satisfies the Schr6dinger 
equat ion with HamiRonian (1) and boundary, condit ions 
(4) is the Slater determinant  buil t  on the functions of  
free mot ion 

~r = sin(n- rc~ ), (~  
L P 

x = X p -  ( p -  l ) .d ,  ~ = L ( N -  l)d, (6) 
P 

sin(n---~ ~ ) 
L' "J {<-! 

sin [ ~ ~ 
# N'/ 

n I t 

... sin[nv 7 x  l 

f 

L ".)! 

�9 l 
" "  S l n t n , v '  ~ . ' v  I 

t. .,I 

(7) 

It can be readily understood that the boundary condi- 
tions are met at the boundaries o f  the sect ion due to the 
form of  functions (-~3, and during contac t  o f  the particles, 
Ycn+l = Y:n, due to the equality o f  two rows of  determi- 
nant (/-3. It can be seen that only at n I ~ n 2 ~ ... r n u do 
the wave functions differ from zero, i.e., only one condi-  
tion of  absolute collision of  particles (13), (4)) results in 
the Fermi wave function and Fermi spectrum. 

Thus,  for the energy of  the system we have: 

E,q ...... tr i=12m , L ) 
| ~ ,  "n,', (<~) 

n I ~ n 2 ~...~ n N, 

and the Fermi energy is given by 

3 2m t.L ) 

C "= 7t2/r 2, 

where I = d - 2a, where d = l / N  is the per iod o f  the 
one-d imens iona l  lattice. 
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